
Network Resource Isolation in
Serverless Cloud Function Service

Jeongchul Kim
College of Computer Science

Kookmin University, South Korea

kjc5443@kookmin.ac.kr

Jungae Park
College of Computer Science

Kookmin University, South Korea

barkjungae@kookmin.ac.kr

Kyungyong Lee
College of Computer Science

Kookmin University, South Korea

leeky@kookmin.ac.kr

Abstract—Serverless computing and function execution using
cloud computing services are currently the subject considerable
attention from both academia and industry. One of the reasons
for the success of serverless computing is its straightforward
interface that allows users to control the size of the memory
allocated for the run-time of a function. However, this approach
may result in the abstraction of too much information, and users
cannot predict how their applications will perform, especially
for the network resource. To address this issue, we evaluated
several aspects of network resource performance. Despite the
general belief, the variation of serverless applications’ network
performance is quite significant, and the ability to isolate network
resource allocation during concurrent execution is rarely pro-
vided by service providers. Based on the results presented in this
paper, we insist that network resource performance of functional
execution models should be more visible and predictable, in order
to expand the applications of serverless computing.

Index Terms—serverless computing, FaaS, network

I. INTRODUCTION

Serverless computing is gaining popularity with the

Function-as-a-Service (FaaS) execution model. Without incur-

ring the overheads involved in provisioning Cloud instances

and being able to scale them as needed, FaaS systems allow

system developers to focus on the implementation of core

logic. Many public Cloud service vendors provide an FaaS

execution model with their own custom cloud services, such

as block storage, database, messaging, and event notification.

One of the major benefits of the FaaS is its straightforward

interface, which allows users to select a minimal set of

configurations. The Lambda service provided by AWS, the

first public FaaS provider, lets users set the maximum memory

size for function run-time, and the CPU quota is allocated

proportionally to the RAM size, as is the service charge.
Despite its popularity, many of the recent applications of

FaaS execution models are limited to the orchestration of

multiple cloud services or gateway functions by invoking other

proprietary cloud services or custom functions for passing

input and output arguments. Bag-of-tasks type applications

that do not impose dependencies among parallel jobs are

also a good candidate for the FaaS model. Processing large-

scale datasets with well-designed parallel algorithms using

cloud computing resources is becoming the norm, but such

big data applications do not fit well with the current FaaS

execution model. Hellerstein et. al. [1] also insist that data-

intensive applications should be natively supported by the FaaS

execution model, in order to widen the adoption of serverless

computing in many fields.
The abstracted resource and billing model of FaaS hides

considerable information about underlying compute resources,

and users are likely to be ignorant of how the function will

perform. To address this issue, Wang et. al. [2] evaluated

several public FaaS execution environments, and uncovered

many issues regarding service scalability, performance iso-

lation, hardware heterogeneity, and the cold-start problem.

Although this work identified important attributes of various

FaaS environments, the evaluation mainly focused on CPU

and memory resources, and the performance characteristics of

network resources are barely covered; for network resource

performance, they conducted only one experiment using the

iperf3 system command to observe resource isolation charac-

teristics by invoking multiple functions on a same host. They

concluded that the aggregated network bandwidth does not

differ from that of concurrent executions of various numbers of

executions; hence, they did not identify any network resource

isolation mechanisms amongst function invocations. However,

we believed that the network performance in the FaaS runtime

needed deeper investigation, because it will become more

important as the serverless computing approach broadens its

application scenarios to data-intensive applications.
In order to better understand the network performance

of FaaS using container technology, we measured various

network-related metrics: total aggregated bandwidth usage of

a host machine; parallel download tasks end-to-end response

time; and total download time of an AWS Lambda service

with a micro-benchmark, using the iperf3 system command

and a realistic workload that accesses a block storage service.

We investigated the performance of both download and upload

tasks from the run-time of functions.
From the results of our experiments and subsequent analy-

ses, we made the following observations:

• The iperf3 system command, widely used as a network

micro-benchmark in previous work, does not provide an

accurate estimate of realistic network performance

• Quantitative evaluations reveal that the configuration of

memory allocation for functions makes a difference in

network bandwidth performance, even though they are

not enforced by a service provider

• A response time and cost evaluation revealed that allocat-

182

2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

978-1-7281-2406-3/19/$31.00 ©2019 IEEE
DOI 10.1109/FAS-W.2019.00051



ing more resources to function run-time does not always

produce a proportional gain in performance, and costs

can increase significantly

We believe that the findings in this paper will be valuable

when building data-intensive applications in FaaS environ-

ments, by providing insights into the impact of the allocation

of RAM and CPU resources to network performance. The

comparison of networks from many concurrent download

functions reveals that the end-to-end response time can be

shortened with increased parallelism, but the total aggregated

download time across functions increases significantly, result-

ing in increased bills for end users. Although the current

FaaS execution model is popular because of the abstraction of

complex resource provisioning and scheduling, users should be

conscious of the impact of concurrent executions on a single

host to avoid unexpected performance when deploying data-

intensive applications in an FaaS environment.

The remainder of this paper is organized as follow. Sec-

tion II discusses related work. Section III describes details

about serverless computing and function execution environ-

ments. Section IV presents thorough evaluation of a function

service regarding network resource performance, and Sec-

tion V concludes the paper with future work.

II. RELATED WORK

Many cloud service vendors provide FaaS execution models;

Lambda by AWS; Functions by Azure; and Cloud Func-

tions by Google. In contrast to other public cloud service

providers, IBM open-sourced their function service implemen-

tation, Openwhisk. OpenLambda [3] is another open source

implementation of FaaS. As a container orchestration tool,

Kubernetes [4] has been adopted for many industry appli-

cations that are built using a micro-service architecture. To

further extend the functionality of Kubernetes, many open

source serverless platforms built on top of Kubernetes are

actively under development, including OpenFaaS, Kubeless,

and Knative. These applications have the potential to con-

tribute significantly to the expansion of the adoption of FaaS

in industry and academia, but they tend to show unpredictable

performance because of a high level of resource abstraction.

Wang et. al. [2] and Lee et. al. [5] compared public function

execution environments. These researchers focused mainly

on quantitative evaluation of concurrent function throughput,

service scalability, and the cold-start problem. Their evaluation

mainly focused on CPU and memory resource performance,

and did not cover network resources as thoroughly as we do

in this paper. As the FaaS execution environment focuses on

data-heavy applications, we believe that the impact of network

resource becomes as important as CPU and memory.

Despite the popularity of FaaS, its applications are currently

quite limited to the orchestration of multiple cloud services.

To extend the scope of FaaS applications, Kim et. al. [6]

propose running data analysis jobs on Flint using a serverless

environment. Ishakian et. al. [7] ran a deep neural network

model inference engine on an FaaS platform and compared

its performance with those of dedicated machines. Feng et.

cloud

VM host

…

invocation

Lambda functionuser

Amazon EC2

Automatic 
Provisioning

Amazon EC2

…

VM host

cgroup

Network (net_cls)

Disk I/O (blkio)CPU (cpus, quota)

Memory

container (memory : 128MB)

container (memory : 256MB)

container (memory : 128MB)

Fig. 1: Procedure of function invocation (AWS Lambda)

al. [8] proposed an algorithm to run DNN training tasks using

FaaS. Pywren [9] ran large-scale linear algebra and machine

learning jobs on AWS Lambda. Son et. al. [10] presented an

algorithm to build an optimal cloud environment to execute

matrix multiplication tasks, and the proposed algorithm can be

applied to a function environment. Recent efforts reported in

the literature are tending towards expanding FaaS applications

to data-heavy jobs [1], and we have demonstrated that the per-

formance impacts from network resources can be significant.

III. FUNCTION EXECUTION MECHANISM FOR

SERVERLESS COMPUTING

Initial public cloud computing services offered virtualized

instances, so that users could run an operating system image

based on needs. From the initial offering, cloud computing ser-

vices developed in the direction of hiding the complexities of

infrastructure provisioning, operating system dependency, soft-

ware installation, and automatic scaling as demands change.

In the context of resource abstraction, serverless computing

provides several services freeing users from the burden of

server instance provisioning. For example, the Amazon API

Gateway provides a public web endpoint service, usually with

HTTP protocol support, alleviating the burdens of instance

provisioning and the installation of necessary software, such

as Apache web server or nginx. For database services without

server provisioning, AWS provides DynamoDB (key-value

storage) and Aurora (RDBMS), which are fully-managed by

the service provider, allowing users to focus on core data

management tasks.

In order to decrease challenges of users for the setup of

compute-processing environments, many cloud service ven-

dors provide a function service, called FaaS. With this service,

a user implements the core functionality of an application

and registers it with an FaaS. For the invocation of regis-

tered functions, an event-based approach is widely used. The

sources of events are generally other services provided by the

vendor. For example, in a Lambda, FaaS of AWS, functions

can be invoked when an image file is uploaded to Amazon

S3 to perform further registered actions, such as changing

permissions for public access and file transcoding. With the

abstraction of instance provisioning, a service provider can

optimize resource utilization by packing as many functions as

possible in a single host. In order to achieve this goal, a service

183



provider uses container technology that has relatively lower

management overhead and start time than virtualization [11].

In addition to the reduced overhead of server provision-

ing, most FaaS vendors provide a simple memory-based

billing mechanism. In the function configuration step of AWS

Lambda and Google Cloud Function, users have to decide

upon the maximum memory size required by a function,

and the service bill is calculated as the registered memory

size times the duration of function execution. Other resources

are known to be allocated in proportion to the configured

memory size. In contrast to a virtualization technique that

relies on a hypervisor for resource isolation among multiple

tenants, container technology relies on cgroup, which pro-

vides per-resource isolation. In cgroup, the parameter mem-
ory.limit in bytes sets the maximum memory size that a con-

tainer can use. There are many ways to control the maximum

CPU usage of a container: container-to-core binding; share

(priority)-based allocation, and absolute time allocation. When

using absolute time allocation, cpu.cfs period us specifies the

period of time that the CPU quota is reallocated. In combina-

tion with cpu.cfs period us, cpu.cfs quota us sets the amount

of CPU time that a container can use during cpu.cfs period us.

In FaaS execution model, CPU resources are allocated by

setting the ratio of cpu.cfs quota us
cpu.cfs period us to the ratio of configured

memory size and the host machine’s total memory size.

For network resource allocation, cgroup’s net prio subsystem

allows the setting of priorities among many containers, and

can be used to differentiate network resource allocation. For

block IO device allocation, blkio subsystem’s weight option

allows the user to set the relative importance of a containers

IO usage. With its container technology and resource isolation

mechanism, an FaaS vendor can provide performance guaran-

tees with a simple billing mechanism. Based on the analysis

of the FaaS vendors’ performance, [2], [5] determined that

CPU and memory resources are allocated proportionally to

user payments, but these authors did not produce an in-depth

discussion of network resource allocation and isolation. An

FaaS working scenario is shown in Figure 1.

IV. PERFORMANCE CHARACTERS OF FUNCTION SERVICES

Prior work [2], [5] has focused on evaluation and com-

parison among many FaaS providers, focusing mainly on

memory allocation and the corresponding CPU performance.

As FaaS applications become more data-friendly, it appears

that network performance becomes crucial to the provision of

predictable performance, so we focused on the evaluation of

FaaS network performance with respect to memory allocation

and concurrent execution.

A. Experiment Setup

The workload applications in the experiments mostly con-

sider the network resources, and the impact from the run-time

of a function should be minimal. As a micro-benchmark, we

used the iperf3 system call to measure available network band-

width. To use the iperf3 system command, we created a large-

enough dedicated server using an Amazon EC2 c4.8xlarge in-

Fig. 2: Network bandwidths evaluation with iperf3

(a) Download time (b) Upload time

Fig. 3: Response time with different file size

stance with the -s option of iperf3, as function run-times do not

support a direct connection [1]. The Lambda function run-time

works as a client where the IP address and port of the server

is passed as function arguments. Using the iperf3 command,

we can let a client (function run-time) work as either a data

uploader (default option) or downloader (with -R option), and

we present the result in both cases when necessary. To measure

latency of data download and update, we use Amazon S3 as a

source and destination from the Lambda run-time and utilize

Amazon Fine Food Review text dataset1 with Python2.7 and

boto3 library. The different memory configuration of function

run-time limits the maximum file size to be loaded in the

memory, and we partition the dataset into chunks with 10, 20,

50, 100, and 200MB. All AWS resources in the experiments

are deployed on N. Virginia region. We share the source codes

used in the paper publicly2 for reproducibility.

We present various metrics related to network performance.

The download time is the time taken by a single function

run-time to download a file. The response time measures the

end-to-end latency when downloading files in parallel from

multiple function executions. The large input dataset was

partitioned into small chunks so that parallel download was

implementable. The aggregated download time is the accumu-

lated download time from multiple function executions. Unlike

the response time, aggregated time does not consider function

parallelism by adding up download time from each container,

and it determines billing for the download service.

B. Impact of Memory Size Configuration

We first evaluated the network bandwidths available with

AWS Lambda with different memory size configurations by

using the iperf3 system command. In Figure 2, the hori-

1https://snap.stanford.edu/data/web-FineFoods.html
2https://github.com/kmu-bigdata/faas-network

184



(a) Download time (b) Upload time (c) response time - cost

Fig. 4: The impact of function’s configured memory size to the network performance and cost

zontal axis shows the memory size configured in Lambda.

The leftmost six bars show the available bandwidth when a

function run-time works as an uploader, and the rightmost six

bars represent the available bandwidth when a function run-

time works as a downloader, data obtained using the iperf3
-R option. Previous work [2] has investigated the bandwidth

available in a function execution environment in the upload

case, and the value obtained matches with Figure 2. From

these experimental results, we can see that the service provider

does not provide different levels of network quality based on

the configured maximum memory size.

Evaluation with the iperf3 system command provides an

easy way to investigate the network bandwidths available for a

function run-time, but it does not represent a realistic scenario

for data applications that may downloading or uploading of

files from a shared block storage. To understand the network

performance of FaaS under a realistic scenario, we performed

download and upload experiments using blocks of data of

different sizes. Figure 3 shows the download (Figure 3a) and

upload (Figre 3b) times of input files of different sizes on

a Lambda run-time with 1024MB of memory configured.

The primary vertical axis shows the response time taken to

process a chunk, and the secondary vertical axis shows the

network bandwidth consumed. The file size does not have

a noticeable impact on network bandwidth use. We used a

10MB input chunk file size in the following experiments,

unless otherwise noted, that is executable with the minimal

memory configuration (128MB).

To evaluate the impact of memory size when real datasets

are accessed from a function execution environment, we

measured the download time, upload time, and the relationship

between response time and cost (Figure 4). Figure 4a shows

the download time for each function run-time when the total

file size is 1 GB, divided into 10MB chunks. Thus, the total

number of chunks to download is 100, equal to the total

number of function executions required to process all of the

chunks. In the figure, we show the median value across many

invocations, in order to avoid impacts from unavoidable long-

tail latency in a cloud environment [12]. In Figure 4a, the

median download time decreases as the functions allocated

memory size increases. This observation contradicts the results

from the iperf3 experiment (Figure 2) which showed that

function memory allocation does not have an impact on the

network bandwidth performance. In addition, with respect to

the amount of available bandwidth, access to S3 services from

a function run-time exhibits much lower available bandwidth

than the iperf3 tests; for 128MB of configured memory for

a function, iperf3 shows about 70MB/s while the download

from S3 shows 9.5MB/S. Amongst many possible reasons,

we believe that differences in the experiment environment and

scenarios are likely to be the most significant reason for this

difference. In the iperf3 experiment, we created a VPC in

which a function run-time and EC2 instance can talk to each

other via a fast local area network. However, access to S3

from a function run-time might include routing through the

public Internet, even though the services exist in the same

AWS region. Another difference is the execution environment:

for the iperf3 experiment a system command is invoked, but

download from S3 includes Python 2.7 with the boto3 library

to actually access the S3 service. We also believe that the

iperf3 test involves lower memory usage and CPU utilization

than does using Python with the boto3 library, and more

intense resource usage of S3 downloads actually degraded the

network performance.

Figure 4b shows the per-function upload time (median

value) and available bandwidth. Similarly to the results shown

in Figure 4a, the available upload bandwidth increases as the

allocated memory size increases, and these findings are also

contrary to the results shown in Figure 2. From the experimen-

tal results presented in Figures 4a, 4b, and 2, we can conclude

that the widely-used iperf3 benchmark does not accurately

reflect the network performance of function environments.

Obviously, in an FaaS application, the chance of accessing S3

is higher than using the iperf3 command. Thus, to represent

realistic data-intensive applications in a function environment

evaluation, we have to consider using external data source in

order to better understand the behavior of function execution

environments. We can also conclude that although the service

provider does not differentiate available network bandwidth of

a function run-time based on the allocated memory size, the

limited memory size and CPU usage quota impact the network

performance, and functions are likely to use limited network

bandwidth based on memory allocation.

AWS Lambda has a unique billing model that reflects

the configured maximum memory size and running time of

a function. To investigate the impact of function memory

185



configuration and cost to download all the necessary input files

in S3, we created a response time and cost map (Figure 4c).

In the experiments, each function downloaded a chunk of size

10 MB. The total number of chunks downloaded was 100,

and a new function invocation happened for each chunk. In

the figure, the horizontal axis shows the configured memory

size. The primary vertical axis shows response time, with

values shown on the solid line with circle markers. The

secondary vertical axis shows the normalized cost of running

the entire set of functions, with values shown on the dotted

line with square markers. From the figure, we can observe

that the response time decreases as the configured memory

size increases. However, the normalized cost increases with

increasing memory size, because the increased memory does

not result in linear improvement in the overall download

response time. This non-linearity becomes noticeable as the

memory size becomes much larger; for example, between

2048MB and 3008MB. If we increase memory size from

128MB to 256MB, the response time will be halved, with

a marginal cost increase. However, a memory increase from

1024MB to 2048MB shortens the response time by about 25%,

but the cost increases by about 68%.

C. Impact of Concurrent Execution

We evaluated the impact of configured memory size on

overall network performance. We then investigate the impact

of concurrent execution of functions on a single host.

Concurrent Execution Evaluation Methodology : In order

to decide if function executions were conducted on a same

host, Wang et. al. [2] proposed a function run-time and host

mapping mechanism. For concurrent execution detection, we

profiled self/cgroup file of the proc file-system from a function

run-time. This file provides the VM identifier, which begins

with “sandbox-root”, and if the VM identifier is the same,

we assume that the function runs on a same host. We ran

the concurrency tests on AWS Lambda as much as possible,

but the function placement is not deterministic, a situation

which caused difficulties in result verification. To overcome

this issue, we created a function run-time environment using

an AWS EC2 instance and Docker. Among the EC2 instance

types, we used c3-large, which has two virtual cores and

3.75GB RAM, and is known to be widely used for function

run-time [2]. Docker provides an easy way to stop, start, and

deploy containers. Docker uses cgroup to isolate resources

among containers. For memory allocation, we use –memory
option to specify the maximum amount of memory that a

container can use, and for CPU allocation, we used –cpus
to specify the amount of CPU time that a container can

use. The –cpus option uses cgroup’s cpu.cfs period us and

cpu.cfs quota us. After fixing the memory size, we set the

CPU ratio proportional to the memory size. For example, as-

suming the maximum memory size of Lambda to be 3008MB

and a host machine has two virtual cores, the 128MB container

will get a CPU allocation of 0.085 (= 2.0 × 128
3008 ), and the

3008MB container will get CPU allocation of 2.0. With this

method, we created an function execution environment on EC2

Fig. 5: Available network bandwidth with concurrent function

execution measured with iperf3

Fig. 6: download response time and aggregated bandwidth

and performed the memory-based. We cannot present the result

due to space limitation, but it shows very similar pattern with

the Lambda environment. With the confirmation, we perform

experiments on the EC2 and Docker environments when we

cannot make sure many functions run on a same host.

Figure 5 shows the network bandwidths available when

multiple functions run on the same host. To maximize the

number of concurrently running functions on a host, we set

the function memory size as 128MB, with up to 26 functions

executed on the same host. We used the iperf3 scenario to

measure the network bandwidth. In the figure, the horizontal

axis shows the number of functions running concurrently on

the same host. The gray bar shows the median of available

download bandwidths amongst the functions whose value

is marked on the vertical axis. The solid line with round

markers shows the aggregated network bandwidths across all

concurrent functions. We do not show the upload bandwidth

test result, because it is very similar to the download case. The

Lambda service does not restrict network resources based on

the configured memory size, and we could confirm this from

the figure: as the number of concurrent executions increases,

the allocated bandwidth per execution decreases, but the total

aggregated bandwidth stays constant.

Figure 6 shows the download times when multiple functions

are executed concurrently on the same host. In Figure 6, the

number of concurrent executions is shown on the horizontal

axis. The bars show the median download time required for

multiple downloads to fetch all 100 chunks, each 10MB

186



Fig. 7: response time and cost relation

in size, from Amazon S3. The numeric value on each bar

shows the aggregated network bandwidths across concurrent

executions. When there is one function running on a host, we

can see that the download time is the shortest and the aggre-

gated bandwidth is the smallest. As concurrency increases, the

aggregated bandwidth increases, and the download time also

increases, due to network resource contention on a same host.

Figure 7 shows the relationship between the response times

of multiple concurrent function executions and cost, as we

change the number of concurrent executions. The solid line

with round markers shows the response time required to

download all 100 chunks from S3 on the primary vertical

axis. As the number of concurrent executions increases, the

response time decreases, due to increased parallelism. The

dotted line with square markers shows the normalized cost

incurred with increased function concurrency, with values

shown in the secondary vertical axis. Due to the increased par-

allelism and network resource contention, we can observe that

having more functions does not always result in improved cost

efficiency. When a small number of functions run concurrently,

we can fetch necessary files faster by paying proportionally

more. In the case of extreme concurrency, such as 16 and 26

instances, there is almost no response-time gain, but the cost

increases by about 20%. Unfortunately, in a function execution

environment, users do not have control over where submitted

functions will execute or how many functions will execute on

the same machine. From the service providers perspective, it

is evident that packing as many functions as possible into a

single host maximizes resource utilization. Thus, users have

to be cautious about increasing the number of parallel tasks,

as a specific strategy might not be optimal from the response

time and cost perspective.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the results of our investigations

into the performance of network resources in data-intensive

FaaS applications. First, we used the iperf3 micro-benchmark

to confirm that the AWS Lambda service does not differentiate

the network resource allocation in proportion to configured

memory size. We then carried out more realistic scenarios

involving accessing a shared block storage service on the

Internet. In the more realistic applications, we found that

memory allocation strongly impacts network performance in

an indirect manner, because the application involves large

amounts of memory and CPU usage. If multiple functions

run on the same host, network performance can degrade

noticeably, and users can be charged in an unpredictable

manner. We envision that the importance of network resources

for FaaS applications will become significant as data-intensive

applications are increasingly deployed in an FaaS environment,

so the service middleware should schedule network resources

proportionally to user costs.

Our ongoing work includes research into intelligent and fair

scheduling of network resources in a FaaS environment. We

are also conducting more experiments with other public FaaS

providers to confirm the quality of network services for data-

intensive applications.

ACKNOWLEDGEMENTS

This work is supported by the National Research Foun-

dation of Korea (NRF) Grant funded by the Korean Gov-

ernment (MSIP) (No. NRF-2015R1A5A7037615 and NRF-

2016R1C1B2015135), the ICT R&D program of IITP (2017-

0-00396), and the AWS Cloud Credits for Research program.

REFERENCES

[1] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing:
One step forward, two steps back,” in CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 13-16, 2019, Online Proceedings, 2019. [Online]. Available:
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[2] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[3] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in 8th USENIX Workshop on HotCloud 16.

[4] D. K. Rensin, Kubernetes - Scheduling the Future at Cloud Scale, 2015.
[5] H. Lee, K. Satyam, and G. Fox, “Evaluation of production

serverless computing environments,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD),
vol. 00, Jul 2018, pp. 442–450. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00062

[6] Y. Kim and J. Lin, “Serverless data analytics with flint,” in IEEE
CLOUD 2018.

[7] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform.”

[8] L. Feng, P. Kudva, D. D. Silva, and J. Hu, “Exploring serverless
computing for neural network training,” in IEEE CLOUD 2018.

[9] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in ACM Symposium on
Cloud Computing 17.

[10] M. Son and K. Lee, “Distributed matrix multiplication performance
estimator for machine learning jobs in cloud computing,” in
2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), vol. 00, Jul 2018, pp. 638–645. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00088

[11] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in IEEE
ISPASS 2015.

[12] Z. L. Li, C.-J. M. Liang, W. He, L. Zhu, W. Dai, J. Jiang, and G. Sun,
“Metis: Robustly tuning tail latencies of cloud systems,” in USENIX
ATC 2018.

187


